Tight Contact Structures on Lens Spaces

نویسنده

  • JOHN B. ETNYRE
چکیده

In this paper we develop a method for studying tight contact structures on lens spaces. We then derive uniqueness and non-existence statements for tight contact structures with certain (half) Euler classes on lens spaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the classification of tight contact structures I

We develop new techniques in the theory of convex surfaces to prove complete classification results for tight contact structures on lens spaces, solid tori, and T 2 × I . AMS Classification numbers Primary: 57M50

متن کامل

Tight Contact Small Seifert Spaces with e0 != 0, −1, −2

We classify up to isotopy the tight contact structures on small Seifert spaces with e0 6= 0,−1,−2.

متن کامل

Tight contact small Seifert spaces with e0 ≤ 3

We classify tight contact structures on small Seifert spaces with e0 ≤ −3 up to isotopy.

متن کامل

Contact Geometry and Lens Spaces

There exists a canonical symplectic structure on the cotangent bundle of a differentiable manifold and similarly a canonical contact structure on the positive projectivization of the cotangent bundle under the scaling R action. Given a Riemannian (or Finsler) metric on the original manifold, this contact structure is contactomorphic to the contact structure determined by the metric on the unit ...

متن کامل

Tight Contact Structures via Dynamics

We consider the problem of realizing tight contact structures on closed orientable three-manifolds. By applying the theorems of Hofer et al., one may deduce tightness from dynamical properties of (Reeb) ows transverse to the contact structure. We detail how two classical constructions, Dehn surgery and branched covering, may be performed on dynamically-constrained links in such a way as to pres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997